Linkage of pluripotent stem cell-associated transcripts to regulatory gene networks.

نویسندگان

  • Kirill V Tarasov
  • Gianluca Testa
  • Yelena S Tarasova
  • Gabriela Kania
  • Daniel R Riordon
  • Maria Volkova
  • Sergey V Anisimov
  • Anna M Wobus
  • Kenneth R Boheler
چکیده

Knowledge of the transcriptional circuitry responsible for pluripotentiality and self-renewal in embryonic stem cells is tantamount to understanding early mammalian development and a prerequisite to determining their therapeutic potential. Various techniques have employed genomics to identify transcripts that were abundant in stem cells, in an attempt to define the molecular basis of 'stemness'. In this study, we have extended traditional genomic analyses to identify cis-elements that might be implicated in the control of embryonic stem cell-restricted gene promoters. The strategy relied on the generation of a problem-specific list from serial analysis of gene expression profiles and subsequent promoter analyses to identify frameworks of multiple cis-elements conserved in space and orientation among genes from the problem-specific list. Subsequent experimental data suggest that 2 novel transcription factors, B-Myb and Maz, predicted from these models, are implicated either in the maintenance of the undifferentiated stem cell state or in early steps of differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

سلول‏های بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری

Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...

متن کامل

MERVL/Zscan4 Network Activation Results in Transient Genome-wide DNA Demethylation of mESCs

Mouse embryonic stem cells are dynamic and heterogeneous. For example, rare cells cycle through a state characterized by decondensed chromatin and expression of transcripts, including the Zscan4 cluster and MERVL endogenous retrovirus, which are usually restricted to preimplantation embryos. Here, we further characterize the dynamics and consequences of this transient cell state. Single-cell tr...

متن کامل

Induced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy

Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our knowledge of genetic association studies and the underlying molecular mechanisms.  Rapid progression in stem cell therapy and cell reprogramming provides compelling reasons for its fe...

متن کامل

A Quick update from the Past to Current Status of Human Pluripotent Stem Cell-derived Hepatocyte culture systems

Pluripotent stem cells (PSCs) may be offered as an unlimited cell source for the hepatocyte generation. The generation of hepatocytes from stem cells in vitro would provide an alternative cell source for applications in drug discovery and cell transplantation. In this review, we discuss different approaches to generate pluripotent stem cell-derived hepatocytes, advantages, limitations for each ...

متن کامل

Nuclear transcriptome profiling of induced pluripotent stem cells and embryonic stem cells identify non-coding loci resistant to reprogramming

Identification of functionally relevant differences between induced pluripotent stem cells (iPSC) and reference embryonic stem cells (ESC) remains a central question for therapeutic applications. Differences in gene expression between iPSC and ESC have been examined by microarray and more recently with RNA-SEQ technologies. We here report an in depth analyses of nuclear and cytoplasmic transcri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cells, tissues, organs

دوره 188 1-2  شماره 

صفحات  -

تاریخ انتشار 2008